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Abstract. Jacobi brackets (a generalization of standard Poisson brackets in which Leibniz’s
rule is replaced by a weaker condition) are extended to brackets involving an arbitrary (even)
number of functions. This new structure includes, as a particular case, the recently introduced
generalized Poisson structures. The linear case on simple group manifolds is also studied and
non-trivial examples (different from those coming from generalized Poisson structures) of this
new construction are found by using the cohomology ring of the given group.

1. Introduction

Poisson structures (and Hamiltonian systems) can be introduced in geometrical terms by
means of an appropriate bivector fieddverifying certain compatibility conditions that can

be formulated by imposing the vanishing of the Schouten—Nijenhuis bracket (SNB) [1, 2] of
A with itself, [A, A] = 0 [3]. This construction neither makes reference to symplectic
structures nor requires a manifold of even dimension and provides a very convenient
approach to generalize standard Poisson brackets. Following this path, a generalization
of standard Poisson structures has been introduced [4] based on even multivector fields
A € AP having zero SNB with themselves\[ A] = 0. In the linear case, this new
generalized Poisson structugPS) admits an infinity of examples related to the higher-
order Lie algebras [5], a fact which generalizes the well known isomorphism between linear
Poisson structures constructed out of the structure constants and (ordinary) Lie algebras. The
GPS are different from those proposed by Nambu long ago [6] where a (Nambu—)Poisson
bracket involving three functions was introduced. Later Takhtajan [7] extended the Nambu
construction to a Nambu—Poisson bracket with an arbitrary number of functions (see also
[8-10]).

In this paper we construct a higher-order generalization of the Jacobi structures [11, 12],
themselves a generalization of the standard Poisson structures, called local Lie algebras by
Kirillov [13]. The generalization of the Poisson structures provided by the Jacobi ones is
the result of substituting the Leibniz rule (derivation property) of the Poisson bracket by
the weaker condition

support f, g} € support f N supportg. Q)

Then, it is possible to show [13] that the new brackeiopbi bracke}is a local type operator
which has to be given by linear differential operators. This implies that Jacobi structures, in
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contrast with standard Poisson structures which may be determined uniquely by a bivector
field A, are characterized by the differential operators defining the Jacobi bracket, namely a
bivector and vector fielda andE. If we now want the new bracket to satisfy the (standard)
Jacobi identity (see (3) below)y and E must verify some compatibility conditions that

can be expressed in terms of the Schouten—Nijenhuis bracket [11,12]. It is cleallthat
Poisson structures are also Jacobi structures because the Leibniz rule implies condition (1);
this is the case when the vector fieidis set equal to O.

The aim of this paper is to show that, using the same geometrical approach by means of
which (standard) Poisson structures can be extended to higher-order GPS, Jacobi structures
can also be extended to higher-ordggneralized Jacobi structure@GJS). In these, the
generalized Jacobi brackets involve an arbitrary even number of functions. They satisfy the
same generalized Jacobi identity (GJI) introduced in [4] (see (17)) by virtue of which both
linear differential operators (ag2vector and a (2 — 1) vector field) defining the generalized
Jacobi bracket are constrained by some conditions expressed by means of the SNB. When
the (2» — 1) vector field is set equal to zero we recover a standard Poisson structure (for
p = 1) or a GPS p arbitrary). As a result, all GPS are also generalized Jacobi structures.
Although | have not been able to find a direct application of the GJS (which, as far as |
know, is not easy even for the standard Jacobi structures), | have been able to provide an
infinite number of examples of these structures in the linear case, which extends greatly
their mathematical interest.

The paper is organized as follows. In section 2 the definition of Jacobi bracket and Jacobi
manifold is recalled [11-13]. In section 3 the GJS are introduced and some examples given.
Some conclusions close the paper.

2. Jacobi manifolds
Let F(M) be the associative algebra of functions on the manifagld
Definition 2.1 (Jacobi bracket). A Jacobi bracketis a bilinear operatior{, } : F(M) ®

F(M) — F(M) which satisfies (1) and the following conditiond, g, h € F(M):
(a) skew-symmetry

{f. ¢} =—{g. 1} 2
(b) the Jacobi identity
{fi{g. By +{g. {h, fR+{n.{f g} =0. 3)

Conditions (a) and (b) endow (M) with a structure of Lie algebra. A manifold with
a Jacobi bracket is called a Jacobi manifold. If we substitute (1) for the stronger condition
{f. ghy =g{f. h} +{f g}h (4)

(Leibniz rule), we obtain a Poisson bracket (and tiéns called a Poisson manifold).
The more general form of a Jacobi bracket on the maniMlés given [13] by

{f. 8} = AW@f,dg) + fE(dg) — gEf) 5)
where A and E are, respectively, a 2-vector and a vector field locally written as
A =3AY0 A0 E =¢5. (6)

Condition (a) is automatically satisfied {f } is defined by (5). Condition (b) is taken into
account by requiring

[A,A]=2EAA  [E,A]=0 @)
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where [, ] stands for the SNB [1, 2]. In fact (see [11])

DA fi (fis il = (A, Al = 2E A A)(df1, dfa, dfs) — el filE, Al(df;, dfi) ®)

so that, by requiring (7), the Jacobi identity is satisfied. Thus [11], a Jacobi structie on
is defined by a 2-tensok and a vectolE satisfying the conditions (7).
It is clear that forE = 0 we recover the equation

[A,A]=0 (9)

which states thaf\ is a Poisson bivector and thgt} defines a Poisson structure [3] ah.
In the same way that it is possible to characterize non-degenerate Poisson structures by
covariant tensors satisfyingfd= 0, the Jacobi structures on a manifold of dimensian 2
with non-degenerate bivectar are characterized [13,12] by a 2-forfn and a 1-formp
which verify dF = n A F, whereF andn are given by their coordinates defined by

Ay =8 ni = F&". (10)

Examples of Jacobi structures (and Jacobi manifolds) are given by the locally conformal
symplectic manifolds [14] defined on an even-dimensional manifdldhrough a non-
degenerate 2-form2 and a closed 1-formw (the Lee form [15]) satisfying

A2 =wAQ (11)

and the contact manifolds where we have a maniMlavith dimM = 2n+1 and a 1-form
o on M (the contact form) which verifies

o A (dw)* #£0 Vx e M. (12)
We want to recall here the linear case.

Example 2.1. Let Q be the Poisson bivector associated with a Poisson-Lie structure

(.e., @ = %ka{_‘ja" A 34, where Cl"] are the structure constants of a Lie algelgta
then [2, Q] = 0. If we define the dilatation vector field = x;0°, we may check that
[A, Q] = —Q. So, definingA = Q + E A A and imposing A, E] = 0 or, equivalently,

[E, Q] = —E A[E, A] we obtain
[A,A]=[EAAEANA]+2[Q EANAl =2EAQ =2E AA. (13)

Hence, the pair{ = Q + E A A, E) defines a Jacobi structure i£[ Q] = —E A [E, A].
In particular, if E is a constant vector, the condition above is equivalent to the one-
cocycle condition forE, which reads

£,Cly =0, (14)

For instance, ifG is a simple (or semisimple) algebra the first cohomology griu(y) is
zero (Whitehead’s lemma), but we can take the algglwa (1) for which H1(GRu (1)) # 0.
Then, the bivecton is given by

A =30 CHY' A 4 x99 A D (15)

whereg denotes the coordinate corresponding to#® algebra generator (see [16]).



6512 J C Pérez Bueno
3. Generalized Jacobi structures

A natural higher-order generalization of the standard Jacobi structures of definition 2.1 is
given by 2» and (2» — 1) vector fields defining the linear mapping (cf (5))

2p .
(i foo) = Afe .. dfzp) = Y (=Y FEDfi ... . df;. ... df2) (16)
j=1

which is antisymmetric in all its argumenys. Then, to define generalized Jacobi structures
we still have to impose a generalized Jacobi identity. This leads to

Definition 3.1 (Generalized Jacobi structure)A generalized Jacobi structur@n the
manifold M is defined by a 2 and (2 — 1) vector fields {\, E) such that the mapping

{,....,-}: F(M) x 2. xF(M) — F(M) given by (16) satisfies thgeneralized Jacobi
identity [4]

L an i oo Fopi S oo Frpad =0 V€ F(M). (17)
The bracket (16) will be called generalized Jacobi bracket

Now we need to characterize the generalized Jacobi structures in terms gf toed2
the (2p — 1) vector fields {\, E). This is achieved by the following.

Lemma 3.1 (Characterization of a GJS)The linear mapping (16) is a generalized Jacobi
bracket (i.e., verifies (17)ff A and E, written in a local chart (cf (6)) as
1

1 .
A= 71\11"'121’8{ VANKICIIVAN 8,» F=———
: 2 2p — 1)

2p!
satisfy

%-il...izp—lail A A aizlz—l (18)

[A, Al =22p —DEAA [E, A] = 0. (19)

Proof. The structure of the proof is equivalent to that for the standard 1 case. In
it we write the generalized Jacobi identity and factorize different kinds of terms. First we
consider terms with first derivatives ifi's. Those in (17) with the formdf;...9fa,-1
(all f's derived once) are proportional 1@2p — 1)(E A A) — %[A, A]). Those with a
non-derivedf are either proportional t& A E and hence directly zercE(is of odd order)
or proportional to E, A]. Those with two non-derived’s (f;, f; say) are zero because
they are symmetric under the permutatifin< f; while being antisymmetric the GJI in
all the f's.

The terms with second derivatives are proportional to

il...iz —10 ﬂiz ...i4 -3 il...iz ,zﬂ aig ,1...l'4 -3
6i1...l‘4,,,3 (A i E ’ r + S r A ’ v )

or to
€ivi s jlmjn_l(Ail---in—laAjl---jn—lﬂ + Ail---in—laAjl---jnflﬂ)

which are zero beingZ and A of odd and even order respectively. Thus, the unique
conditions required to cancel all terms in the GJI are given by (19). O

Corollary 3.1. In the particular caseE = 0, (16) reduces to{fi,..., fop} =
A(dfi,...,df2,) and (19) reduces ta, A] =0, i.e., A defines a GPS [4].
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Example 3.1. Let M be a manifold with dimM > 2; then if we take asA a (dimM)
multivector field, for each (dilM — 1) vector E we have a pairA, E) defining a GJS
and M becomes a generalized Jacobi manifold. The conditions (19) are satisfied because
[A, Al and E A A are (2dimM — 1) vectors and 4, E] is a (2dimM — 2) vector which

are trivially zero onM.

This is a very simple example that, in some sense, generalizes the fact that a 2-vector
on a two-dimensional manifold defines a (standard) Poisson structure.

Example 3.2. We can extend the linear example given in section 2 to this case. To this aim
let Q be a % vector field defining a linear generalized Poisson structure (see [4]), locally
written as
k i iop

= Tﬂwil---iZIJXka A A 8 2 (20)
and letA be the dilatation operator as in example 2.1. Then, for evepy<2) vector
field E satisfying [E, Q] = —E A[E, A] (that is, [E, 2 + E A A] = 0) we can define
a generalized Jacobi structure given by the gair= Q + E A A, E). In particular, if
E = (1/(2p — DY&i, i, ,0" A --- A 31 is a constant vector the condition @hreduces
to the expression

i1.-02p-2]1--J2p

ky..kap—2 $V51»~~i2p—2wj“)1...j2,, =0 (21)
or, equivalently,
0oE =0 (22)

where dg is the coboundary operator for the generalized Poisson cohomology introduced
in [4]. In contrast with the standargd = 1 case, we do not need to ‘extend’ the algebra
to find (2p — 1)-cocycles for the coboundary operatyi. In fact, as shown in [4] (see
also [5,17]), all the higher-ordeg¥-cocycles for the ordinary Lie algebra cohomology are
cocycles for thédg cohomology. In other words, it is sufficient to find a simple Lie algebra
with cocycles of orders (2 — 1) and (2 + 1) (or, in terms of the associated invariant
polynomials, Casimirs of ordergs and p + 1). This is the case, for instance, fou(3)
where we find the generalized Jacobi structure given by the(fair E A A, E) where

k k
Q= €2y, Ct C2 x0" A2 AJB A
4| izisia “kake™ivj2 ™ jaja

1 . 4 .
E = gcilizmall NGNS (23)
the coordinates;;x = C;jx of E are the structure constants 0f(3) and thed;;; are the
constants which appear in the anticommutators of the Gell-Mann matrjces

{Ai, A} = 53151']' 13 + 2d;ji A (24)
The same construction extendsste(! + 1) ~ A; (I > 2) for which we havd primitive
invariant polynomials of orders 3, ..., /+1 and hencé cocycles of orders, 3, ..., 2/ +1.

Thus, for every cocycle (different from the first one of order three which defines the
standard Poisson/Jacobi structure) we can give a non-trivial generalized Jacobi structure.
This explains why the standard case is singular and we have no linear Jacobi structures
on the simple groups (defined by the tree-cocycle given by the structure constants which
always exists).

1 This is an important difference with the standare= 1 case (section 2) in which we cannot define linear Jacobi
structures on the dual of a simple Lie algebra.
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4. Conclusions

Despite the lack of a Leibniz rule that permits us to define a simple dynamigsbyH, f}
(where{, } stands for a Jacobi bracket) or, in the generalized cAse{Hx, ..., Hy,_1, f}

(see [4] for a discussion on generalized Poisson dynamics) the Jacobi structures are not
devoid of physical (and mathematical) interest.

Generalized Poisson structures [4] (see also [18] for Zhegraded case) and their
higher-order algebra counterparts [5] provide a particular examplgtrofigly homotopy
algebras[19, 20] which are relevant in certain structures appearing in closed string theory
and in connection with the Batalin—Vilkovisky formalism (see e.g., [21, 22]; for an account
of the Batalin—Vilkovisky formalism see [23, 24]). It has been mentioned recently [25] that
there is a relation between Batalin—Vilkovisky algebras and Jacobi manifolds, although such
a connection has not yet been made explicitly. Clearly, the standard and the generalized
Poisson structures [4] are also special examples of the Jacobi structures considered here (it
is sufficient to setE = 0 and add the Leibniz rule) and, as such, they may share some
properties, but more work is needed to analyse any physical applications of the GJS and,
in particular, their possible quantization. Note already that although (standard) Poisson
brackets may be quantized by the bracket of associative operators that verifies the Leibniz
rule

[A, BC] = ABC — BCA =[A, B]C + B[A, C]

(as well as skewsymmetry and Jacobi identity) the standard Jacobi structure does not satisfy
this relation (unless it also defines a standard Poisson structure). Moreover, in general, the
skewsymmetrized product of an arbitrary (even) number of associative operators does not
satisfy the Leibniz rule (despite the fact that it verifies the generalized Jacobi identity [5]).

From a purely mathematical (but nevertheless relevant) point of view, the mathematical
contents (see example 3.2) give to the new GJS a special interest, particularly in the linear
case, where we have been able to provide examples associated with the cohomological
properties of the Lie algebras. This raises the question of whether other relations among
the cocycles of a given Lie algebra may give rise to generalized Jacobi brackets. This is
matter for further work.

Acknowledgments

This research has been partially supported by a research grant from the Spanish CICYT.
The author wishes to th&n) A de Azdrraga for helpful discussions and comments on the
manuscript. The kind hospitality extended to him at DAMTP and an FPI grant from the
Spanish Ministry of Education and Science and the CSIC are also gratefully acknowledged.

References

[1] Schouta J A 1940Uber Differentialkonkomitanten zweier kontravariantero@enProc. Kon. Ned. Akad.
Wet. Amsterdam3 449-52

[2] Nijenhuis A 1955 Jacobi-type identities for bilinear differential concomitants of certain tensor fieldg.
Math. 17 390-403

[3] Lichnerowicz A 1977 Les vaéites de Poisson et leurs &lgres de Lie assamésJ. Diff. Geom.12 253-300

[4] de Azcarraga J A, PerelonwoA M and Rerez Buen J C 1996 New generalized Poisson structureBhys.
A: Math. Gen.29 L151-7

de Azdrraga J A, PerelomoA M and Rerez Buen J C 1996 The Schouten-Nijenhuis bracket, cohomology

and generalized Poisson structude$hys. A: Math. Ger9 7993-8009



(5]

(6]

(7]

(8]

(9]
[20]
[11]
(12]
(23]
(14]
(15]
(16]
(17]
(18]
[19]
[20]
[21]
[22]

(23]
[24]

(25]

Generalized Jacobi structures 6515

de Azcarraga J A and Rrez Buen J C 1997 Higher-order simple Lie algebr@dsmmun. Math. Physl84
669-81

Nambu Y 1973 Generalized Hamiltonian dynamiisys. RevD 7 2405-12

Takhtajan L 1994 On foundations of the generalized Nambu mech@unsnun. Math. Phy4.60295-315

Alekseevsky D and Guha P 1996 On decomposability of Nambu-Poisson #ctsdvath. Univ. Comenianae
LXV 1-9

Chatterjee R and Takhtajan L 1996 Aspects of classical and quantum Nambu medtethiddath. Phys.
37475-82

Hietarinta J 1997 Nambu tensors and commuting vector figldhys. A: Math. Gen30 L27-33

Lichnerowicz A 1978 Vaites de Jacobi et leurs &bres de Lie assa@esJ. Math. Pure Appl57 453-88

Guedira F and Lichnerowicz A 1984&metrie des akpres de Lie locales de Kirillod. Math. Pure Appl.
63 407-84

Kirillov A A 1976 Local Lie algebrafRussian Math. Surveyal 55-75 Uspekhi Math. Nauk31 57-76)

Vaisman | 1985 Locally conformal symplectic manifolog. J. Math. & Math. Sci8 521-36

Lee H C 1943 A kind of even-dimensional differential geometry and its application to exterior cafoues
J. Math. 65 433-8

Chinea D, Marrev J C and de Leén M 1996 Prequantizable Poisson manifolds and Jacobi structuRtgys.
A: Math. Gen.29 6313-24

de Azdrraga J A, Izquiem J M and Rrez Buen J C On thegeneralizations of Poisson structutesPhys.
A: Math. Gen.submitted

de Azdrraga J A, Izquierdo J M, Perelom@® M and Ferez Buen J C 1997 TheZ,-graded Schouten-
Nijenhuis bracket and generalized super-Poisson strucluidsth. Phys38 3735-49

Lada T and Stasheff J 1993 Introduction to SH Lie algebras for physicistd. Mod. Phys32 1087-103

Lada T and Markl M 1995 Strongly homotopy Lie algeb@smmun. in Alg23 2147-61

Zwiebach B 1993 Closed string theory: quantum action and the Batalin-Vilkovisky master egqNaitibn
Phys.B 39033-152

Kosmann-Schwarzbach Y 1996 Derived brackets and the gauge algebra of closed stringPtbeoiXI|
Int. Coll. on Group Theor. Methods in PhysifSoslar) to appear

Henneaux M 1990 The antifield BRST formalidducl. PhysB (Proc. Suppl.J18A 47-106

Gomis J, Paris J and Samuel S 1995 Antibracket, antifields and gauge-theory quaniigtsoriRep259
1-145

Ibort A, de Leédbn M and Marmo G 1997 Reduction of Jacobi manifold$hys. A: Math. Ger30 2783-98



